The first study ever to examine sleeping behavior in a wild group of primates has challenged a central tenet of sleep science: that we must make up for lost sleep. Even after sleeping poorly, wild baboons still spent time on other priorities, such as socializing with group-mates or looking out for predators, rather than catching up on lost sleep. The team of scientists from the Max Planck Institute of Animal Behavior, Konstanz, Germany; and the Ƶ, Davis, used noninvasive technology to monitor sleep patterns across almost an entire group of individuals at once. The findings lay bare the competing priorities that suppress sleep homeostasis in wild primate societies — raising the possibility that humans have navigated sleep deprivation throughout our evolutionary history.
Studies of sleep have revealed that animals of every species, from honeybees to humans, put aside a portion of each day to rest. But, with some notable exceptions, all sleep studies share the same thing in common: They were conducted on animals in the laboratory. In laboratory settings, animals perform the phenomenon known as sleep homeostasis — an animal with an accumulated sleep debt will later sleep longer or more deeply than usual. Sleep homeostasis has long been considered a key criterion in the very definition of sleep.
But the new study published March 1 in demonstrates that animals in the wild face a slew of ecological and social demands that can disrupt sleep homeostasis. Specifically, baboons sacrificed sleep to stay awake in new environments and to remain close to their group-mates, regardless of how much they had slept the prior night or how much they had exerted themselves the preceding day.
“The competing priorities that lead humans to accumulate sleep debt might seem unique to a modern, industrialized society like ours. But our findings demonstrate that nonhuman primates also sacrifice sleep, even when it might be unhealthy to do so, to partake in other activities,” said Carter Loftus, a doctoral student in the UC Davis Department of Anthropology and Animal Behavior Graduate Group, who led the study. “The tradeoff between sleep and other pressing demands on our time is, therefore, one that we have likely been navigating throughout our evolution.”
“Baboons are highly vulnerable to nighttime predation and their fitness depends on maintaining strong social bonds. Trading off sleep to maintain alertness in novel, risky environments and to remain close to group-mates during the night may therefore represent an essential adaptation,” Loftus said.
Strengthening social bonds overnight
To identify when animals were sleeping and when they were awake, the team collected high resolution movement data from GPS trackers and accelerometers attached to almost all baboons in a troop. As the first study to investigate collective sleeping behavior in wild primates, the findings bring to light the unknown social costs and benefits associated with sleep in animal societies. Baboons experienced shorter, more fragmented sleep when sleeping near more of their group-mates. However, they also synchronized periods of nocturnal awakening with nearby individuals, suggesting